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Abstract: This paper is devoted to the development of an optimal control system of trajectory movement of a 

mobile robot. Synthesis of the trajectory control law is based on the methods of optimal control and 

asymptotical methods of singular perturbation theory. Singular perturbation theory’s methods are used for 

reducing the order of the solving problem and it helps to simplify the realization of the control law. Proposed 

system has two control loops: position control loop and velocity control loop. Based on this, the structure of the 

control system is represented by two modules: the reference and the executive. In this work the results of 

experimental verification of the trajectory control system at the mobile robot Rover5 with the tank-type chassis 

are presented. 
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1 Introduction 
Autonomous mobile robots are increasingly 

being implemented in industry, scientific and 

research projects, and many other areas where the 

direct participation of man is undesirable or not 

possible. The problem of mobile robot (MR) control 

is relevant over the years because of the wide range 

of practical applications and theoretical problems 

associated with it. To confirm this fact we should 

notice that there is a great number of works in the 

field of motion control of MR, published in recent 

decades. Their reviews can be found in [1-10]. 

For trajectory movement control problem the 

main task is to minimize the MR’s current position’s 

deviation from the position specified by a reference 

trajectory. Thus, as a rule, simple nonlinear models 

are operated, which characterize only the kinematic 

relationship between the current MR’s motion 

parameters and parameters predetermined by a 

reference trajectory. At this point it is possible to 

mark out two basic approaches to the synthesis of 

the trajectory control. The first approach is based on 

linear control design methods and tangent 

linearization of system model about the reference 

trajectory. At that, a pole placement method is 

usually used to adjust controller parameters [3,6-9]. 

The second approach is based on the feedback 

linearization or nonlinear control design methods, 

according to which controller’s parameters are 

calculated using the method of Lyapunov functions 

[2-5,10]. 

Despite the efficiency of these approaches, the 

point of using optimal control methods for the 

synthesis of trajectory control system is actual. It is 

possible to note several works [11-13], where for 

setting-up the parameters of control law it is 

proposed to solve some optimization problems. At 

that, the quality of tracking a reference trajectory is 

determined by some criterion, and this criterion 

should be optimized. As a result are obtained the 

control laws which are determined by selected 

criteria and methods of optimization.  

This work is devoted to synthesis of optimal 

control system of MR’s trajectory movement. The 

solution of this problem is based on the optimal 

control methods and singular perturbation method 

[14]. The last one is based on the order reduction of 

the problem and a simplified representation of 

controller gives us a possibility to simplify 

implementation of the control law. 

The remaining sections of the paper proceed as 

follows: Section 2 describes the mathematical model 

of the control object and the trajectory control 

problem statement; Section 3 is devoted to the 

problem of synthesis of optimal control system of 

MR’s trajectory movement; Section 4 describes the 

structure of the trajectory control system; the results 

of experimental tests of the designed system are 

shown in Section 5; some conclusions are shown in 

Section 6. 
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2 Formulation of a trajectory control 

problem 
 

2.1 MR’s mathematical model  
The movement of mobile robot with a tank-type 

chassis in a horizontal plane is reviewing (Fig.1). 

MR’s kinematics model is [15,16]: 
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where YX ,  – is the current position of the MR in 

the earth coordinate system; VVV ,, 21  – linear 

velocities of left and right tracks and of the MR, 

correspondingly;   – MR’s angular velocity;   – 

the angle between the vector V  and the axis X . 

The equations of the dynamics of the MR’s 

movement in the horizontal plane including the 

dynamics of robot’s motors (it is assumed that both 

motors are completely identical) are [15,16]: 
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where Jm,  – mass and moment of inertia of the 

robot; n  – gear ratio; r  – radius of the driving-

wheel; mc  – motor torque constant; 2,1, iIi  – 

current in the armature winding of the motor; iU  – 

voltage in the motor armature; LRm ,  – resistance 

and inductance of the armature winding of the 

motor; ec  – motor e.m.f. constant. 
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Fig.1 The MR’s movement on a plane. 

2.2 Statement of the MR’s trajectory 

movement control problem 
We suppose that there is a given trajectory 

))(),(),(()( ttYtXtp refrefrefref  . MR’s trajectory-

following errors (Fig. 2) is defined as [3-8] 
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Differentiating (3), we obtain the nonlinear 

model of tracking errors dynamics of MR’s 

movement on a reference trajectory: 
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Linearization of these equations about the 

reference trajectory (i.e with 0ie , i=1,2,3) leads 

to a system 

 





















,

,

,

2
3

31
2

12
1

u
dt

de

eVe
dt

de

ue
dt

de

refref

ref





  (4) 

where is denoted ., 21   refref uVVu  

The problem is in searching of control inputs 1u  

and 2u  which would be achieved with a minimum 

of the integral quadratic cost function  
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Fig. 2 Statement of the problem of MR’s trajectory 

movement control. 
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Having known the control inputs 1u  and 2u  the 

required robot’s velocities values are calculated 

., 21 uuVV refreqrefreq    

The next step is to stabilize the linear and 

angular velocities of the MR in the neighborhood of 

the required values reqV  and req . This problem 

can also be formulated as an optimal control 

problem, i.e. minimize the quadratic cost function 
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on the trajectories of the system (2), written in 

deviations from the nominal mode reqVVV 
~

, 

req ~ . 

Thus, the trajectory movement control problem 

is reduced to two sub-problems. The first one 

concerns with the synthesis of the position control 

loop based on the solution of the optimization 

problem (4), (5). The second sub-problem is 

connected with the synthesis of the velocity (linear 

and angular) control loop of MR’s movement, based 

on the solution of the optimization problem (2), (6). 

It should be noticed that if reqV  and req  are 

constants, the first sub-problem is time-invariant, 

otherwise it’s time-varying, the second sub-problem 

is time-invariant. 

 

 

3 Solution of the trajectory movement 

control problem 
 

3.1 Synthesis of position control loop 
Position control loop is designed on the basis of 

the solution of the optimization problem (4), (5), 

which can be conveniently written in vector-matrix 

form:  
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where “T” – the sign of transpose; “diag(...)” – is a 

diagonal matrix with the given elements on the main 

diagonal. 

The solution of (7), (8) under the condition of 

controllability of matrix pair )),(( BtA  (which holds 

for all refV , ref , except 0 refrefV  ) is [17] 

(hereinafter, the time dependence is omitted for 

simplicity) 
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where KP is a symmetric positive definite solution 

of the Riccati matrix differential equation 
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Finally, for the required values of MR’s linear 

and angular velocities, we have: 

.

,

323222121

313212111

egegeg

egegegVV

refreq

refreq






 

 

3.2 Synthesis of velocity control loop 

The task of velocity control loop synthesis we 

will formulate in vector-matrix form: 
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If the system (10) is controllable and observable 

then the optimal control problem (9), (10) has the 

unique solution [17] 

 ,T1 GxPxBRu    (11) 
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where P  is a solution of the Riccati matrix 

algebraic equation 

.0 1TTT QBPRPBPAPA    

The main disadvantages of such a solution are, 

firstly, calculating difficulties connected with the 

solution of the Riccati’s matrix equation in real 

time, and secondly, the need to measure all the 

components of the state vector for evaluation of 

optimal control. 

In this case, the second aspect limits the use of 

the optimal control law (11) more acutely, because, 

usually, robots are equipped with sensors of motor’s 

angular velocity, but not the current sensors. 

Let’s assume, that MR’s structure is able to 

measure only the angular velocities of the motors 

1r  and 2r . From (1) it is easy to show that 
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Then the state-space equation (10) is 

supplemented by the output equation 
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To overcome this limitation it is suggested to use 

the suboptimal control, which is an asymptotic 

approximation to the original optimal control law 

(11) [15]. The suboptimal control synthesis’s 

method is based on a singularly perturbed 

presentation of the system and its subsequent 

reduction [14]. In this case state variables are 

usually divided into “slow” 1x  (slowly changing), 

and “fast” 2x  (rapidly changing). Usually variables 

that characterize the trajectory displacement are 

considered to be slow, and the variables that 

describe the internal processes in the system are 

considered to be fast. In such a situation, it is logical 

to define as slow the variables of linear and angular 

robot’s velocities, and as fast – the currents in the 

motors of the robot. As a result, the system (10) can 

be rewritten in singular perturbed form  
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If 22A  is nonsingular, then for sufficiently small 

  the vector of slow variables 1x  are approximated 

(up to )(O , O  – Landau’s symbol) by the vector 

sx , which is defined by slow system [14] 
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Let’s solve the problem of minimizing the 

performance index for the slow system (14): 
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The solution of this problem has such a form:  
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It is important to notice a peculiarity of 

solutions (11) and (15), that with the   small 

enough and Hurwitz matrix 22A  the asymptotic 

equality is held [14] 
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The task of the implementation of feedback 

components of the vector 1x  remains unsolved. It is 

convenient to use the expression for output of slow 

system (13), whence can be expressed 
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Substituting this expression in (11) and (16), we 

finally have 
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The formulas (15)-(17) are the mathematical 

basis for the synthesis of sub-optimal MR’s velocity 

control loop that is necessary for the calculation to 

solve the reduced problem. 

The fact that under the condition of stability of 

the slow and fast subsystems, closed-loop original 

system is stable for all values of the perturbation in 

some interval ),0(   turned out to be helpful [14, 

15]. The critical value   deals as a index of the 

robust properties of the closed-loop system, i.e. the 

more is  , the more robust is a system. Some 

methods for  -bound computing are shown in [14]. 
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4 Structure of the trajectory 

movement control system 
 

The separation of the control problem into two 

sub-problems (position and velocity control loops) 

leads to an obvious structure of trajectory movement 

control system (Fig. 3). 

The proposed structure of control system consists 

of two main modules: reference module and 

executive module. The reference module is placed 

on the PC. It contains the trajectory generator, 

position control loop and errors computing unit. The 

executive module includes velocity control loop and 

estimator of the robot’s position. It is placed on 

MR’s board. 
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Fig. 3 Structural diagram of the MR’s  

control system. 

 

4.1 MR’s trajectory generator 
The robot’s movement along the reference 

trajectory is defined by the coordinates refref YX ,  of 

an arbitrary robot’s point M. Projections of the 

point’s M velocity on the fixed axes are continuous 

functions of time: 
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The considered MR is a nonholonomic system. 

So, there is a nonholonomic constraint which can be 

written in the following form [1] 

0cossin   YX VV . 

This constraint doesn’t allow setting arbitrarily 

the angular coordinate   of robot, which in such a 

situation must be a solution of the differential 

equation [1] 
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where cosMb  and sinMb  – constant coordinates 

of a point M in the coordinate system associated 

with the robot. Integrating (18), we find the law for 

ref  changes. 

 

4.2 MR’s position estimator 
The assessment of a current MR’s position is 

calculated according the measurements of MR’s 

motors angular velocities 1r  and 2r  on the left 

and right boards. Further, from (12) linear and 

angular velocities are calculated: 
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The current position of the robot is determined 

from (1), by using the Euler approximation: 
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where sT  is a sample period, index «p» matches a 

value corresponding to the last sampling point. 

 

 

5 Experimental test of control system  
 

5.1 Description of the experimental MR 
Object of the study is a MR, built on the tracked 

chassis Rover5 by DAGU (Fig. 4). Power section of 

robot includes two electric drives based on the DC. 

As a control unit Arduino UNO R3 controller based 

on ATmega328 microcontroller by Atmel is used. 

To control the robot motors Rover5 Explorer PCB 

board from DAGU is used. It is equipped with two 

FET H-bridges rated at 4A, as well as built-in 

charging circuitry of NiMh and NiCd batteries. 

Wireless communication interface is implemented 

through the usb-programmable wireless module 

Wixel by Pololu Corporation, which connected with 

the Arduino board via Wixel Shield. 
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Fig. 4 MR Rover5. 

 

Linear dimensions of the robot Rover5: track 

length 2450.l  , m; driving wheel’s radius 03.0r , 

m; robot’s mass 83.0m , kg; distance from the 

center of the robot to the track 19.0d , m. Motor 

parameters: rated voltage: 2.7нU , V; armature 

resistance 100mR , Ohm; armature inductance 

0123.0L , H; gear ratio 8.86n . For measuring the 

motor’s speed MR Rover5 is equipped with two 

quadrature encoders (Fig. 5). Encoder’s resolution is 

1000 pulses for 3 turns of the driving wheel. 

 

 
 

Fig. 5 Rover5 quadrature encoder. 

 

5.2 The experimental results 

A circle was taken as a test trajectory. At the 

initial time the robot is at the point with coordinates 

(0,0), the trajectory starts to move from the point  

(0,0.25).  

The frequency of harmonic signals )(tX ref  and 

)(tYref  is set so that the trajectory )(tpref  forms a 

circle for 40 seconds.  

The experimental results on a real Rover5 robot 

are shown in Figure 6-8, where are shown reference 

and real Rover5’s trajectories, required reqV  and real 

V  linear velocities, required req  and real   

robot's angular velocities. 

The results show us that the system has an 

acceptable quality. Robot enters the reference 

trajectory for 8 seconds, then deviations are  

022.0Xe , m, 008.0Ye , m, 05.0e , rad, the 

relative trajectory tracking error doesn't exceed 9%. 
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Fig. 6 The experimental results: reference and real 

trajectory of MR Rover5. 
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Fig. 7 The experimental results: required and real 

linear velocity of MR Rover5. 
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Fig. 8 The experimental results: required and real 

angular velocity of MR Rover5. 
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6 Conclusions 
In this work the problem of the mobile tank-type 

chassis robot’s optimal trajectory movement control 

system design is considered. The proposed system 

consists of two modules (reference and executive) 

and has, accordingly, two control loops: the first – 

position control loop, the second – velocity control 

loop. 

The synthesis of trajectory control loop is based 

on solving the linear-quadratic optimization 

problem for tracking error. Its mathematical model 

is the tangent linearization of the MR’s tracking 

error dynamical system about the reference 

trajectory. In general case, the control law is a 

tracking error feedback with time-varying 

coefficients. Non-stationary nature of the problem is 

determined by the time-varying values of reference 

linear and angular velocities of the robot. In such a 

case when these velocities are constant, the problem 

becomes stationary and the feedback’s coefficients 

also become time-invariant. 

The designing of MR’s velocity (linear and 

angular) control loop is also based on solving the 

linear-quadratic optimization problem. To simplify 

this problem, from the point of calculation and 

implementation of optimal control it is proposed to 

use its asymptotic approximation obtained by 

singular perturbation method. 

Experimental verification of developed MR’s 

trajectory movement control system was performed 

on Rover5 robot with tank-type chassis. The results 

of experiment confirmed the acceptable quality of 

control system. 
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